by Yi-Feng Lü^a)^b), Ke-Yu Chen^a), Hui-Liang Li^{*a}), Yue-Hu Pei^b), Run-Hui Liu^a), Wei-Dong Zhang^{*a})^c)

^a) School of Pharmacy, Second Military Medical University, Shanghai 200433, P. R. China (phone: +86-21-25070387; fax: +86-21-25070387; e-mail: faranli@hotmail.com)
^b) School of Traditional Chinese Materia Medica 49#, Department of Natural Medicinal Chemistry, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, P. R. China
^c) School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China (phone: +86-21-25070386; fax: +86-21-25070386; e-mail: wdzhangy@hotmail.com)

Biotransformation of vermitaline (1) by *Cunninghamella echinulata* (ACCC 30369) was carried out. Four biotransformation products were obtained and three of them were characterized as new compounds. On the basis of their NMR and mass-spectral data, their structures were characterized as 7α -hydroxyrubijervine (2), 7α -hydroxyrubijervine-7-O- β -D-galactofuranoside (3), 7α -hydroxyvermitaline (4), and 7α -hydroxyvermitaline-7-O- β -D-galactofuranoside (5).

Introduction. – Microbial transformation is an effective tool for the structural modification of bioactive natural compounds. Its application in asymmetric synthesis is increasing due to its versatility and ease [1]. A variety of transformations on natural products such as oxidation, reduction, hydrolysis, isomerization, epimerization, rearrangement, D-homoannulation, *Michael* addition, and reverse aldol reaction can be performed [2]. *Cunninghamella echinulata*, a filamentous fungus, is recognized for its potential for steroid hydroxylation and has been noted for its ability to mimic mammalian hepatic metabolism with other substrates [3][4].

Veratrum alkaloids are a group of potent hypotensive agents that act by reflex suppression of the cardiovascular system [5][6]. Vermitaline¹) (1), a verazine type steroidal alkaloid, is one of the most extensively studied. The interest in *Veratrum* alkaloids has recently been renewed as they were patented several times during the past few years [7-9]. The potent regulatory effects of jervane *Veratrum* alkaloids on hedgehog signaling, modulation of cholesterol biosynthesis and transport, and control of cell proliferation during mandibular arch morphogenesis have been reported recently [10]. Biotransformation of *Veratrum* alkaloids, such as rubijervine, jervine and veratramine by various microorganisms has been reported previously [11–13].

In continuation of our studies on the phytochemistry of *Veratrum* alkaloids [14][15], we now report the characterization of four metabolites of vermitaline (1) in cell suspension of *C. echinulata* (ACCC 30369). The metabolites, which were more polar than 1, were identified as 7α -hydroxyrubijervine (2)¹), 7α -hydroxyrubijervine-7-O- β -D-galactoside (3)¹), 7α -hydroxyvermitaline (4)¹) and 7α -hydroxyvermitaline-7-O- β -D-galactoside (5)¹) by spectroscopic methods.

¹⁾ For systematic names, see *Exper. Part.*

^{© 2008} Verlag Helvetica Chimica Acta AG, Zürich

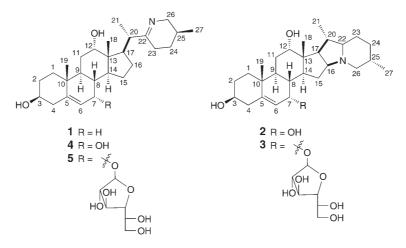


Figure. Structures of Compounds 1-5

Results and Discussion. – Compound **2** was obtained as a white amorphous powder, showing a positive reaction with *Dragendorff's* reagent. The HR-ESI-MS (positive mode) gave the molecular formula $C_{27}H_{43}NO_3$ from the $[M+H]^+$ signal at m/z 430.3314. The ESI-MS of **2** showed a significant fragment ion peak at m/z 412 ($[M + H - H_2O]^+$). The IR spectrum exhibited absorptions for OH groups (3370 and 1070 cm⁻¹). The ¹³C-NMR spectrum (*Table 1*) of **2** showed signals due to four Me, eight CH₂, and twelve CH groups, and three quaternary C-atoms, of which included one C=C bond (δ (C) 141.9 C(5), 122.3 C(6)) and three oxygenated sp³-C-atoms. The ¹H-NMR spectrum (*Table 2*) indicated H-atom resonances for four Me groups at δ 0.69 (*s*, Me(18)), 0.90 (*d*, *J* = 6.0, Me(21)), 0.96 (*s*, Me(19)), 0.97 (*d*, *J* = 6.6, Me(27)), and the ¹³C-NMR exhibited the signals of three C-atoms attached to an N-atom at δ (C) 73.7 (C(16)), 75.8 (C(22)), and 61.6 (C(26)), which are characteristic for a solanidine type steroid alkaloid. Considering the steroidal alkaloids previously reported from the genus *Veratrum*, **2** was determined to be the known compound 7α -hydroxyrubijervine¹) [16].

Compound **3** was obtained as a white amorphous powder, showing a positive reaction with *Dragendorff*'s reagent. The HR-ESI-MS (positive mode) gave the molecular formula $C_{33}H_{53}NO_8$ from the $[M + H]^+$ signal at m/z 592.3842. The ESI-MS of **3** gave a significant fragment ion peak at m/z 430 ($[M + H - 162]^+$). The IR spectrum exhibited absorptions for OH groups (3361 and 1073 cm⁻¹). The ¹³C-NMR data of **3** were similar to those of 7 α -hydroxyrubijervine (**2**), except for the presence of six signals at $\delta(C)$ 60.8, 68.7, 75.8, 77.0, 80.3 and 101.9. From the above analysis, and considering the elimination of the 162 Da neutral fragment in the ESI-MS, we concluded that there is a β -galactose moiety (D-configured) in **3** by comparison of chemical shifts and coupling constants of the sugar moiety with those of galactofuranose [17], but the absolute configuration of the sugar units have not been proved. Therefore, **3** was determined as an analog of 7α -hydroxyrubijervine (**2**). The galactofuranose moiety must be attached to C(7) due to the HMBC correlations

	1	2	3	4	5
CH ₂ (1)	38.2	38.1	38.1	38.2	38.4
$CH_2(2)$	32.6	32.5	32.5	32.6	32.4
H-C(3)	71.9	72.1	70.2	71.9	72.1
$CH_2(4)$	43.0	42.8	42.3	43.0	43.1
C(5)	142.1	141.9	143.2	142.1	143.2
H-C(6)	122.4	122.3	124.5	122.4	122.7
$CH_2(7)$ or $H-C(7)$	30.2	69.9	73.8	70.1	73.9
H-C(8)	37.0	36.8	38.2	37.0	39.4
H-C(9)	47.6	47.9	47.7	47.6	47.9
C(10)	34.8	34.9	34.8	34.8	35.0
$CH_{2}(11)$	33.3	32.9	31.6	33.3	32.9
H-C(12)	72.5	72.4	72.4	72.5	74.3
C(13)	48.3	48.5	48.3	48.3	48.6
H-C(14)	48.2	48.1	48.2	48.2	48.4
$CH_{2}(15)$	24.3	24.1	24.0	24.3	23.9
$CH_2(16)$ or $H-C(16)$	27.4	73.7	72.8	27.5	27.3
H-C(17)	47.3	47.9	47.8	47.3	47.3
Me(18)	13.1	12.5	13.0	13.1	12.7
Me(19)	19.6	19.6	19.7	19.6	19.8
H-C(20)	47.8	47.8	47.6	47.8	47.9
Me(21)	17.6	17.6	17.6	17.6	17.6
C(22) or $H-C(22)$	179.1	75.8	75.9	179.1	179.1
CH ₂ (23)	28.0	28.2	28.4	28.0	28.1
$CH_{2}(24)$	28.2	28.5	28.5	28.2	28.2
H-C(25)	27.3	27.3	27.5	27.3	27.1
CH ₂ (26)	56.7	61.6	61.8	56.7	56.8
Me(27)	19.5	19.9	20.1	19.5	19.6
H-C(1')			101.9		102.0
H-C(2')			77.0		77.1
H-C(3')			75.8		76.0
H-C(4')			80.3		81.9
H-C(5')			68.7		69.9
CH ₂ (6')			60.8		61.9

Table 1. ¹³C-NMR Spectral Data of 1-5. At 125 MHz in MeOH; δ in ppm.

between H–C(1') (5.09, d, J = 7.0) and C(7) (δ (C) 73.8). Therefore, the structure of **3** was identified as 7α -hydroxyrubijervine-7-O- β -D-galactofuranoside¹).

Compound **4** was obtained as a white amorphous powder, showing a positive reaction with *Dragendorff*'s reagent. The HR-ESI-MS (positive mode) gave the molecular formula $C_{27}H_{44}NO_3$ from the $[M + H]^+$ signal at m/z 442.3304). The ESI-MS of **4** showed significant fragment ion peak at m/z 424 ($[M + H - H_2O]^+$). The IR spectrum exhibited absorptions for OH groups (3361 and 1068 cm⁻¹) and a C=C bond (1624 cm⁻¹). The ¹³C-NMR (*Table 1*), ¹H-NMR (*Table 2*) and ESI-MS data suggested that **4** is a monohydroxylated vermitaline derivative [4]. Three OH groups were located at C(3) (δ (C) 71.9), C(7) (δ (C) 70.1), and C(12) (δ (C) 72.5) respectively, due to the HMBC correlations between δ (H) 3.20–3.24 (m, H–C(3)) and C(2) (δ (C) 32.6), and C(4) (δ (C) 37.0), δ (H) 3.68 (dd, J = 2.0, 2.0, H–C(7)) and C(6) (δ (C) 122.4), and C(8) (δ (C) 37.0), δ (H) 3.37 (br. *s*, H–C(12)) and C(11) (δ (C) 33.3), and C(13) (δ (C)

Table 2. ¹*H*-*NMR Spectral Data of* 1-5. At 500 MHz in MeOH; δ in ppm, *J* in Hz.

	1	2	3	4	5
CH ₂ (1)	1.53 - 1.55(m),	1.54 - 1.57 (m),	1.53 - 1.56(m),	1.53 - 1.56(m),	1.53–1.57 (<i>m</i>),
	1.48 - 1.52 (m)	1.48 - 1.53 (m)	1.47 - 1.52 (m)	1.49 - 1.52 (m)	1.48 - 1.59 (m)
$CH_{2}(2)$	1.60 - 1.64(m),	1.60 - 1.63 (m),	1.59 - 1.64(m),	1.62 - 1.64(m),	1.58 - 1.62 (m),
	1.30 - 1.34(m)	1.30 - 1.35(m)	1.32 - 1.36(m)	1.31–1.35 (<i>m</i>)	1.30 - 1.34(m)
H-C(3)	3.22-3.26 (<i>m</i>)	3.21-3.26 (<i>m</i>)	3.22-3.25 (<i>m</i>)	3.20-3.24 (<i>m</i>)	3.21 - 3.25(m)
$CH_2(4)$	2.12 - 2.15(m),	2.11 - 2.15(m),	2.13 - 2.16(m),	2.13 - 2.16(m),	2.13 - 2.16(m),
	2.08 - 2.11 (m)	2.07 - 2.10 (m)	2.09 - 2.11 (m)	2.08 - 2.13 (m)	2.08 - 2.12 (m)
H-C(6)	5.35(d, J = 2.0)	5.35 (d, J = 2.0)	5.32 (d, J = 2.0)	5.32 (d, J = 2.0)	5.32 (d, J = 2.0)
$CH_2(7)$ or	3.68 (dd,	3.68 (dd,	3.30 (dd,	3.68 (dd,	3.30 (dd,
H-C(7)	J = 2.0, 2.0	J = 2.0, 2.0	J = 2.0, 2.0	J = 2.0, 2.0	J = 2.0, 2.0
H-C(8)	1.43 - 1.47 (m)	1.43 - 1.47 (m)	1.75 - 1.79 (m)	1.45 - 1.49 (m)	1.65 - 1.69 (m)
H-C(9)	2.10 - 2.12(m)	2.08 - 2.12 (m)	2.08 - 2.13 (m)	2.09 - 2.12 (m)	2.07 - 2.10(m)
CH ₂ (11)	1.66 - 1.70 (m),	1.65 - 1.69(m),	1.67 - 1.70 (m),	1.65 - 1.08 (m),	1.66 - 1.70 (m),
2()	1.43 - 1.47 (m)	1.44 - 1.47 (m)	1.43 - 1.46 (m)	1.43 - 1.47 (m)	1.45 - 1.48 (m)
H - C(12)	3.50 (br. s)	3.50 (br. s)	3.37 (br. s)	3.37 (br. s)	3.37 (br. s)
H = C(12) H = C(14)	2.08 - 2.12 (m)	2.07 - 2.12 (m)	2.09 - 2.13 (m)	2.08 - 2.11 (m)	2.08 - 2.12 (m)
$CH_2(15)$	1.85 - 1.87 (m),	1.85 - 1.89 (m),	1.84 - 1.87 (m)	1.83 - 1.87 (m),	1.85 - 1.88 (m),
CH ₂ (15)	1.09 - 1.13 (m)	1.09 - 1.12 (m)	1.04 - 1.07 (m), 1.08 - 1.11 (m)	1.09 - 1.13 (m)	1.00 - 1.00 (m), 1.10 - 1.13 (m)
CH (16)	1.09 = 1.15 (m) 1.33 = 1.36 (m),	2.21 - 2.24 (m)	2.21 - 2.24 (m)	1.34 - 1.36 (m)	. ,
$CH_2(16)$ or H-C(16)	1.53 - 1.50 (m), 1.58 - 1.61 (m)	2.21 - 2.24 (m)	2.21 - 2.24 (m)	1.54 - 1.50 (m), 1.58 - 1.62 (m)	1.33 - 1.37(m),
. ,	. ,	224 (11	224 (11	. ,	1.57 - 1.61 (m)
H-C(17)	2.24 (dd, 10.0)	2.24 (dd, 10.0)	2.24 (dd, 10.0)	1.50 - 1.53 (m)	1.50 - 1.53 (m)
M. (10)	J = 10.0, 10.0)	J = 10.0, 10.0)	J = 10.0, 10.0)	0.7(1)	07(()
Me(18)	0.69(s)	0.69(s)	0.69(s)	0.76(s)	0.76(s)
Me(19)	0.96(s)	0.96(s)	0.96(s)	1.01(s)	1.01(s)
H-C(20)	1.63 - 1.67 (m)	1.63 - 1.66 (m)	1.64 - 1.67 (m)	1.88 - 1.91 (m)	1.88 - 1.92 (m)
Me(21)	0.90 (d, J = 6.0)	0.90 (d, J = 6.0)	0.90 (d, J = 6.0)	1.05 (d, J = 5.0)	1.05 (d, J = 5.0)
H-C(22)	1.48 - 1.52 (m)	1.49 - 1.52 (m)	1.48 - 1.53 (m)	-	-
$CH_{2}(23)$	1.64 - 1.68 (m),	1.63 - 1.66 (m),	1.62 - 1.66 (m),	2.33-2.37(m),	2.34-2.37(m),
/	1.20 - 1.23 (m)	1.21 - 1.25 (m)	1.20 - 1.24 (m)	2.23 - 2.27 (m)	2.23 - 2.26 (m)
$CH_{2}(24)$	1.62 - 1.66 (m),	1.63 - 1.66 (m),	1.64 - 1.67 (m),	1.63 - 1.68 (m),	1.62 - 1.65(m),
	0.94 - 0.98 (m)	0.93 - 0.97 (m)	0.95 - 0.98(m)	$0.97 - 1.00 \ (m)$	0.94 - 0.99 (m)
H-C(25)	1.47 - 1.51 (m)	1.49 - 1.52 (m)	1.47 - 1.50 (m)	1.48 - 1.52 (m)	1.47 - 1.52 (m)
$CH_{2}(26)$	2.84 (dd,	2.84 (dd,	1.45 (dd,	1.45 (dd,	1.45 (<i>dd</i> ,
	J = 11.0, 3.5),	J = 11.0, 3.5),	J = 12.0, 6.0),	J = 12.0, 6.0),	J = 12.0, 6.0),
	1.34 (<i>dd</i> ,	1.34 (<i>dd</i> ,	1.19 (dd,	1.19 (dd,	1.19 (dd,
	J = 11.0, 3.5)	J = 11.0, 3.5)	J = 12.0, 5.8)	J = 12.0, 5.8)	J = 12.0, 5.8)
Me(27)	0.95 (d, J = 6.6)	0.97 (d, J = 6.6)	0.95 (d, J = 6.0)	0.94 (d, J = 6.0)	0.97 (d, J = 6.0)
H-C(1')			5.09(d, J = 7.0)		5.09 (d, J = 7.0)
H-C(2')			3.96-3.98 (<i>m</i>)		3.96-3.98 (<i>m</i>)
H-C(3')			4.51 - 4.53 (m)		4.51 - 5.54(m)
H-C(4')			3.91-3.93 (m)		3.90 - 3.93 (m)
H-C(5')			3.62 - 3.65(m)		3.62 - 3.65(m)
$CH_2(6')$			3.81 (<i>dd</i> ,		3.81 (dd,
21 /			J = 2.0, 3.0),		J = 2.0, 3.0),
			3.79 (dd,		3.79 (<i>dd</i> ,
			J = 2.0, 3.0)		J = 2.0, 3.0)

48.3). The configuration of the positions C(3), C(12), C(13), C(10), C(20), and C(25), respectively, was established to be analogous to **1** by analysis of NOESY spectra, and also by comparison of chemical shifts and coupling constants of **4** with those of **1**. The relative configuration of C(7) was deduced to be α , by the observation of the NOESY correlation between H–C(7) with δ (H) 1.45–1.49 (m, H_{β}–C(8)). Therefore, the structure of **4** was identified as 7α -hydroxyvermitaline¹).

Compound **5** was obtained as a white amorphous powder, showing a positive reaction with *Dragendorff*'s reagent. The HR-ESI-MS (positive mode) of **5** displayed a peak at m/z 592.3853 ($[M + H]^+$), suggesting the molecular formula $C_{33}H_{53}NO_8$. The IR spectrum exhibited absorptions for OH groups (3352 and 1068 cm⁻¹) and C=C bonds (1618 cm⁻¹). The ¹³C-NMR (*Table 1*), and ¹H-NMR (*Table 2*) spectra of **5** suggested the structure of a vermitaline derivative. Similar to compound **3**, the ¹³C-NMR spectrum of **5** showed six signals in the region at δ (C) 61.9, 69.9, 76.0, 77.1, 81.9, and 102.0. These data indicated the presence of a β -D-galactose moiety in **5**. H–C(7) (δ (H) 3.30) also showed HMBC coupling with C(1') (δ (C) 102.0). Metabolite **5** was thus confirmed to be 7α -hydroxyvermitaline-7-O- β -D-galactofuranoside¹), a new metabolic product reported for the first time in fermentation studies of steroidal alkaloids.

Experimental Part

General. Vermitaline (=(3β ,1 2α ,1 7β)-17-{1-[(5S)-3,4,5,6-tetrahydro-5-methylpyridin-2-yl]ethyl]androst-5-ene-3,12-diol; **1**) was isolated from the roots of Veratrum dahuricum with a purity of 99.1% by HPLC analysis. The compound was authenticated by detailed NMR analysis and comparing with data from the literature [18]. Column chromatography (CC): *MCI* gel *CHP20P* (high-porous polymer 75–150µ; *Mitsubishi Chemicals*, Japan), reversed-phase silica gel *RP-18* (40–63 µm, *Merck*, Germany), silica gel (SiO₂) (200–300 mesh, *Yantai*, P. R.China) and *Sephadex LH-20* (*Pharmacia Co. Ltd.*). TLC: SiO₂ plates; visualization by spraying with 10% H₂SO₄ in EtOH, followed by heating. Optical rotations: *Perkin-Elmer-341* polarimeter. IR Spectra: *Nicolet-Compact-40-Bruker-Vector-22* spectrophotometer; ν_{max} in cm⁻¹. NMR Spectra: *Bruker AVANCE^{II} 500 NMR*, for ¹H-NMR at 500 MHz, and ¹³C-NMR at 125 MHz; δ in ppm with Me₄Si as an internal standard, *J* in Hz. MS: *Varian MAT-212* mass spectrometer (for ESI)and *Q-Tof* micro mass spectrometer (for HR-ESI); in *m/z*.

Plant Material. The plants were collected in Yanbian, Jilin Province, P. R. China, in September 2005, and authenticated as *V. dahuricum* by Prof. *Yong-Zhen Liu*, School of Pharmacy, Yanbian University, China. A voucher specimen (No. 211) was deposited at the Herbarium of the School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China.

Organisms. The stock culture of *C. echinulata* (ACCC 30369) was maintained on a potato dextrose agar slant. Four *Erlenmeyer* flasks (1000 ml), each containing 300 ml of liquid medium consisting of 0.1% peptone, 0.1% yeast extract, 0.1% beef extract, and 0.5% glucose were inoculated with freshly obtained *C. echinulata* cultured from the agar slant on a rotary shaker at 180 rpm. After cultivation at 28° for 72 h, the vermitaline (1) soln. (50 mg of vermitaline dissolved in 250 μ l EtOH) was added to each flask, and the incubation continued for 12 d.

Microbial Metabolism of Vermitaline. After 12 d of incubation, the incubation mixtures were pooled and filtered. The filtrate was applied to a *MCI-gel CHP20P* column, and washed with H_2O to remove sugars, then it was eluted with 20% aq. MeOH, 60% aq. MeOH, and MeOH to give the fractions *A*, *B*, and *C* resp. Each fraction was evaporated to dryness *in vacuo* and analyzed by TLC, which was developed by CHCl₃/MeOH (10:1) and visualized by spraying with 10% H_2SO_4 soln. *Frs. B* and *C* were combined and chromatographed repeatedly through a SiO₂ column (CHCl₃) and *Sephadex LH-20* (70% MeOH) to furnish **2** (4.9 mg) and **4** (5.6 mg). *Fr. A* was dissolved in 10% aq. MeOH and subjected to RP SiO₂ (*ODS*) CC, eluting with the gradient H_2O /MeOH (100:10–0:100) to give **3** (5.9 mg), and **5** (3.8 mg).

7*a*-Hydroxyrubijervine (= $(3\beta,7\alpha,12\alpha,22\xi)$ -Solanid-5-ene-3,7,12-triol; **2**). White amorphous powder. IR (KBr): 3370, 2951, 2177, 1623, 1070. ¹H - and ¹³C-NMR: *Tables 1* and 2. 2D-NMR (HMBC; 500 MHz, CDCl₃): H–C(3)/C(4), H–C(7)/C(5), H–C(7)/C(8), H–C(15)/C(14). ESI-MS: 430 ([*M* + H]⁺), 412 ([*M* + H – H₂O]⁺). HR-ESI-MS: 430.3314 ([*M* + H]⁺, C₂₇H₄₄NO⁺₃; calc. 430.3321).

7α-Hydroxyrubijervine-7-O-β-D-galactofuranoside (= $(3\beta,7\alpha,12\alpha,22\xi)$ -3,12-Dihydroxysolanid-5-en-7-yl Hexofuranoside; **3**). White amorphous powder. IR (KBr): 3361, 2947, 2170, 1617, 1073. ¹H- and ¹³C-NMR: *Tables 1* and 2. 2D-NMR (HMBC; 500 MHz, CDCl₃): H–C(3)/C(4), H–C(7)/C(5), H–C(7)/C(8), H–C(15)/C(14), H–C(1')/C(7). ESI-MS: 592 ([M+H]⁺), 430 ([M+H-162]⁺). HR-ESI-MS: 592.3842 ([M + H]⁺, C₃₃H₅₄NO^{*}₈; calc. 592.3849).

7*a*-Hydroxyvermitaline (=(3 β ,7*a*,12*a*,17 β)-17-[1-[(5S)-3,4,5,6-Tetrahydro-5-methyl-2-pyridinyl]ethyl]androst-5-ene-3,7,12-triol; **4**). White amorphous powder. IR(KBr): 3361, 2937, 2155, 1624, 1068. ¹H- and ¹³C-NMR: Tables 1 and 2. 2D-NMR (HMBC; 500 MHz, CDCl₃): H–C(3)/C(4), H–C(7)/C(5), H–C(7)/C(8), H–C(15)/C(14). ESI-MS: 430 ([M + H]⁺), 658 ([M + H – H₂O]⁺). HR-ESI-TOF-MS: 430.3304 ([M + H]⁺, C₂₇H₄₄NO⁺₃; calc. 430.3321).

7α-Hydroxyvermitaline-7-O-β-D-galactofuranoside (= $(3\beta,7\alpha,12\alpha,17\beta)$ -3,12-Dihydroxy-17-[1-[(5S)-3,4,5,6-tetrahydro-5-methyl-2-pyridinyl]ethyl]androst-5-en-7-yl Hexofuranoside; **5**). White amorphous powder. IR(KBr): 3352, 2944, 2162, 1618, 1068. ¹H- and ¹³C-NMR *Tables 1* and 2. 2D-NMR (HMBC; 500 MHz, CDCl₃): H-C(3)/C(4), H-C(7)/C(5), H-C(7)/C(8), H-C(15)/C(14), H-C(1')/C(7). ESI-MS: 592 ([*M*+H]⁺), 430 [*M*+H-162]⁺. HR-ESI-MS: 592.3853 ([*M*+H]⁺, C₃₃H₅₄NO₈⁺; calc. 592.3849).

The work was supported by program for *Changjiang Scholars and Innovative Research Team* in University (PCSIRT), NCET Foundation, NSFC (30725045), *National 863 Program* (2006AA02Z338), and, in part, by the *Scientific Foundation of Shanghai*, China (07DZ19728, 07DZ19720, 06DZ19717, 06DZ19005).

REFERENCES

- [1] Atta-ur-Rahman, M. I. Choudhary, Frontiers Nat. Prod. Chem. 2005, 1, 133.
- [2] W. Charney, H. L. Herzog, 'Microbial transformations of steroids', New York, Academic Press, 1967, pp. 16–73.
- [3] W. Yang, P. J. Davis, Drug Metab. Dispos. 1992, 20, 38.
- [4] M. Hezari, P. J. Davis. Drug Metab. Dispos. 1992, 20, 882.
- [5] S. M. Kupchan, J. H. Zimmerman, A. Afonso, J. Nat. Prod. (Lloydia) 1961, 24, 1.
- [6] P. Honerjäger, Rev. Physiol., Biochem. Pharmacol. 1982, 92, 1.
- [7] M. Liscovitch, Y. Lavie, Patent WO0149279, 2001.
- [8] P. A. Beachy, J. A. Porter, M. K. Cooper, Patent US6288048, 2001.
- [9] P. A. Beachy, Patent WO0127135, 2001.
- [10] D. ten Berge, A. Brouwer, J. Korving, M. J. Reijnen, E. J. van Raaij, F. Verbeek, W. Gaffield, F. Meijlink, *Development* 2001, 128, 2929.
- [11] K. A. El Sayed, D. C. Dunbar, Chem. Pharm. Bull. 2002, 50, 1427.
- [12] K. A. El Sayed, A. F. Halim, A. M. Zaghloul, D. C. Dunbar, J. D. McChesney, *Phytochemistry* 2000, 55, 19.
- [13] K. A. El Sayed, J. Nat. Prod. 1998, 61, 149.
- [14] H.-L. Li, J. Tang, R.-H. Liu, M. Lin, B. Wang, Y.-F. Lv, H.-Q. Huang, C. Zhang, W.-D. Zhang, Rapid Commun. Mass Spectrom. 2007, 21, 869.
- [15] J. Tang, H.-L. Li, Y.-H. Shen, H.-Z. Jin, S.-K. Yan, R.-H. Liu, W.-D. Zhang, *Helv. Chim. Acta* 2007, 90, 769.
- [16] R. F. Keeler, *Phytochemistry* **1974**, *13*, 2336.
- [17] D. P. Iga, S. Iga, R. R. Schmidt, M. C. Buzas, Carbohydr. Res. 2005, 340, 2052.
- [18] C.-X. Zhou, R.-X. Tan, X.-C. Ye, Z.-D. Min, Indian J. Chem. 2000, 39B, 283.

Received December 11, 2007